Computation of an Integral Basis of Quartic Number Fields
نویسنده
چکیده
In this paper, based on techniques of Newton polygons, a result which allows the computation of a p integral basis of every quartic number field is given. For each prime integer p, this result allows to compute a p-integral basis of a quartic number field K defined by an irreducible polynomial P (X) = X4 + aX + b ∈ Z[X] in methodical and complete generality.
منابع مشابه
روش انتگرال مسیر برای مدل هابارد تک نواره
We review various ways to express the partition function of the single-band Hubard model as a path integral. The emphasis is made on the derivation of the action in the integrand of the path integral and the results obtained from this approach are discussed only briefly. Since the single-band Hubbard model is a pure fermionic model on the lattice and its Hamiltonian is a polynomial in creat...
متن کاملOn the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملAn explicit treatment of biquadratic function fields
We provide a comprehensive description of biquadratic function fields and their properties, including a characterization of the cyclic and radical cases as well as the constant field. For the cyclic scenario, we provide simple explicit formulas for the ramification index of any rational place, the field discriminant, the genus, and an algorithmically suitable integral basis. In terms of computa...
متن کاملEVALUATION OF THE DEDEKIND ZETA FUNCTIONS AT s = −1 OF THE SIMPLEST QUARTIC FIELDS
The simplest quartic field was introduced by M. Gras and studied by A. J. Lazarus. In this paper, we will evaluate the values of the Dedekind zeta functions at s = −1 of the simplest quartic fields. We first introduce Siegel’s formula for the values of the Dedekind zeta function of a totally real number field at negative odd integers, and will apply Siegel’s formula to the simplest quartic fiel...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009